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An order relation for tensors is defined. With this ordering it is shown that in 
noninteracting N-vector models ( aA%)  -- (OA)<%) is positive. Applications to 
interacting models include a proof for the alignment of spins and the subadditiv- 
ity of the free energy. 
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1. GENERALITIES 

The second Griffiths inequality 

<oAOB> >~ <OA><"B>, ~A :=  I-[ ~i (1) 

established originally (1'2) for the Ising model with ferromagnetic pair inter- 
actions (and special choices for A and B), has been generalized to Ising 
models with positive definite interactionr 3) and to the 2-vector model 
(classical rotators, X Y  model). (4) In fact, proceeding from the Ising model 
(= 1-vector model) to N-vector models, the way to generalize (1) is not 
unique. Possible generalizations are, e.g., component inequalities and they 
are known to hold for N < 4 (see Ref. 5 for a review). The method which 
works for the componentwise inequalities is Ginibre's method of duplicat- 
ing variables/4~ This method is explicitly known (6) to fail in the attempt to 
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prove 

( ( o i .  oj)(ok . o , ) )  >1 ( ( o  i �9 o j ) ) ( ( o  k . o , ))  (2) 

for N-vectors o i with N >/3. 
An explicit counterexample to (2) for N = 3 is known in the quantum 

case, (v) but both the numerical studies by Sylvester (6~ and the caricature of 
the N-vector model, in which the uniform measure on the sphere is 
replaced by the counting measure on the vertices of a cube, ~7~ support (2) 
in the classical case. 

Even in models without interaction between the spins, (1) is not trivial. 
At least twice it has, however, been proved before, namely, by Ira Herbst 
with semigroup methods and by Loren D. Pitt with graphical methods (s~ 
[for o A and o a monomials in (o i �9 9)]" 

We will proceed to prove in this setting the following somewhat 
stronger version: 

Theorem. In the noninteracting N-vector model one has the inequal- 
ity 

@A | Oa) )~ (OA) | (Oe) (3) 

where o~ and 0 8 are tensors 

OA = | oi, o8 = | oi 
i E A  i ~ B  

A and B are ordered arrays of indices. Multiple appearance of indices is 
allowed. The order relation ">-" [which will be formally defined in (12)] 
means that each contraction of all the tensor indices yields an ordinary 
inequality. 

In contrast to (2) we allow here also contractions of indices in A with 
those in B. The index i denotes sites of a "lattice." The structure of this 
lattice is of course completely arbitrary, since ( �9 ) denotes the integration 
with respect to the measure which is simply the product of the uniform and 
normalized measures on the surface of the N-spheres attached to each site. 

We will first prove the theorem and then derive from it consequences 
for interacting systems. The Hamiltonians of these are supposed to be 
generalized ferromagnetic. By that we mean 

- H E Y +  

and 

~-+ := ( f ( ~  = ~(A,B) )kABII(oi'~'OJk)')kAB~O}ik~A (4) 

IAI=[BI j~eB 
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2. PROOF OF THE THEOREM 

The advantage in taking first the expectations of tensorial quantities 
and the contractions afterwards, is that one can make use of "Wick's 
theorem" for the integral of products of the components of one spin a = o i : 

(~) I-I ~'~ = o 

k=,  (5) 

(b) \ - -  / pairings 
Remark on the notation: Greek superscripts are used to denote the com- 
ponents of a, 7r is a decomposition of { a t . . .  a2, } into pairs {ai,,ai2 ) 

�9 " �9 { Oti2,, , ,  a iz"  ) and 

f l  n-1 
~r = [~@/2/_ i~ i21  ' C(~l~) = ]-I (N + 2k) (6) 

l =  1 k=O 

This formula is well-known to the specialists, (6) but a proof does not seem 
to be readily available: 

Proos  (a) is immediate from the symmetry a ~ - a, (b) follows from 
Wick's theorem for Gaussian measures, O) by considering a point x E ~N in 
the representation x = (a,r),  r = Ix], o = x / l x [ .  (5b) is then the angular 
part of the integral f l - I k x ~ e x p (  - I x l2 /2 )dNx .  Evaluation of the radial part 
provides the factor c(n).  [] 

For short hand notation we will use the inner product between tensors 
of the same rank: 

(~ ,0  := ~ s . . . . . . .  r , ~  (7) 

We define an operator C, mapping tensors of rank n + 2 to tensors of 
rank n: 

(ct) . . . . . . .  :=  ~ a B~t ~o, -.- ~o 
/3,7 

Furthermore we denote by ~n the set of all permutation operators acting 
by permutation of n indices. 

To motivate the definition (8) we remark that the contraction of all the 
indices of a tensor can of course be achieved by taking the inner product 
with a 8~, and the corresponding alternative form of (3) is 

(a ~, (oA o~> ) >/(6 ~, <oA ><a~>) (Y) 

We observe that all the tensors appearing in (39 can be expressed in terms 
of the 8 ~. We can thus restrict our attention to the corresponding subspace 
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J of tensors. Our strategy is then to consider the cone f +  generated by 
the 6 ~ and to show that ( O A % ) -  (OA>(% > is an element of the dual 
cone J + 

Definition. 

D~-+(2n) := { pairings2 ~r ~Tr :)k~r >/0} ' ~r 1)= {0}, 
of 2n indices (8) 

J = J - +  - J +  

F o r s ~ J +  we write alsos>/O, f o r s - t ~ J +  we wri tes>i t .  

Remark. We use the letter J ,  because a t ~ J is invariant under 
actions of the orthogonal group O(N).  We drop the indication of the rank, 
wherever it is not necessary. The following properties of J and J +  are 
obvious: 

Lemma. 

(a) J +  (m) | J +  (n) C J +  (m + n), 

J ( m ) |  c J ( m + n )  

(b) VP E ~jo : p j +  (n) = J +  (n), P J ( n )  = J-(n)  (9) 

(c) c J +  ( ,  + 2) = J +  (n), c J ( ,  + 2) = J ( , )  

(d) ( J +  ( n ) , J +  (n)) c JR+ 

From Wick's theorem, the product form of the free measure and (%) there 
follows the following lemma. 

Iemma. 
<oA> > 0 (10) 

As an aside we remark that the immediate consequence is the fol- 
lowing 

Griffiths' First Inequality.  Let H be a generalized ferromagnetic 
Hamiltonian on a finite lattice. Then 

(e-%A>/> 0 ( l l )  

Proof. By expansion of the exponential function we see that e-H is 
in J - +  [Eq. (4)]: 

e-H = X~,(tc,Oc), tc ~ J -  + 
c 
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By virtue of (10) 

and we may write 

( ( t c , O c ) O A )  = C " P ( t c | 1 7 4  ) ~ J - +  by lemma (9) 

with C " P  contracting the indices of t c with those of % .  �9 
This result is in principle a known component inequality. (5) We now 

proceed with the proof of the theorem and define the dual cones. 

Definition. 

J + ( , , )  := { t  ~ J ( , , )  : w  ~ J + ( , , )  : (~.0 > o } (12) 

We write 

for t ~ J  + �9 t> -0  

for t - s E ~ e- + �9 t ~ s 

Because of (9d) we have 

J +  c J  + (13) 

but J + is strictly larger. As an example for a t E J + but t ~ J + ,  take 

t ~Bv~ := - ~ B 6 v a  + [ N ( N  + 2)]- ' (8~By v8 + 6~v6 ~ + 6~a8 B~ ) 

This tensor originates as 

(o~oBo,o~) _ (o~oB)(o~o 8) 
and we will eventually show that all expressions of this kind are elements 
o f J  + 

Since the 8 ~ form a basis of J +, an equivalent form of (12) is 

t E , f +  .r ~ : (8~, t)  /> 0 (12') 

Lemma. 

(a) 

(b)  

(c) 

J +  (m) | ._..r + (n) C J + (m + n) 

V P  ~ P .  : e J  + ( , , )  = J + ( , )  

C J  + (,, + 2) = J + (,,) 

(14) 

Proo f .  (a) Let s ~ J +  (m + n), u ~ J + ( m ) ,  t E J  +(n). Choose a 
permutation P such that 

( s ,u@ t) = ( c m e  (s  @ u),/)  

The right-hand side is positive by Lemma (9) and by definition of J +, so 
(a) is proven. 
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(b) 
tion. 

(c) 

Baumgartner 

(s, Pt)  = (p ts ,  t) >1 0 where p t  = p -  1 effects the inverse permuta-  

Let 3 denote the Kronecker  delta, and s ~ e - +  (n): 

(s, C t ) = ( 3 |  since d |  [] 

A Counterexample. It  is not  true that J + |  + is a contained in 

J +. Take t ~ J -  + : 

t~&~ = 3~#8 ~ - N -  ]8~8#~ (15) 

Contrac t  t ~ & ~ t ~  with 3'~3#~3v~3 8~. The result is N I _ N < 0 for N > 1. 

The crux of all this is now 

Proposition. 
n H 

L e t s  k >10,t k >10,s k ;> t k,  then |  | t k (16) 
k = l  k = l  

Proof.  Write the difference of the products  as a telescopic sum 

@ s k -  @ tk= | -- | 
k = l  k = l  k = l  1 Sj (Sk tk)  ~" j= 1 

We have 

s k - t k > O  

| 

| 
so each term in the sum is >-0. B 

N o w  we are in the position to prove the theorem 

(oA | oD > (oA) | (oB) 

Proof.  (For  the sake of simplicity, we write now the tensor product  
like an ordinary product.)  Bring by a permutat ion Pt,OA into the form 

o A = P]II .ci  
i 

where each Ti collects all the factors o r f rom one site, so that (OA) 

= PlIIi( .ci) .  Similarly 

08 + P2II P,, LoB) = P 2 H  <oi) 
i i 
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By permuting the indices again, let 

i 

and 

so that 

(aA><OB) = P I ~  <Ti)<Pi) 
i 

Now we have the situation of proposition (16), since 

It remains to show that 

This is trivial if �9 or 0 contain an odd number of components of o, so we 
assume both to be even. Since J +  is spanned by tensors 8 ~, we have to 
show that for any pairing v 

( 89, (~'0)) /> ( 6~, (T><p)) (17) 

Remember that ~-~B... = o ~ o B . . ,  with 02= 1. You see that in the left- 
hand side 

= ( I I . 2 )  = 1 

and the right-hand side is of the form 

E <0o~1~ . . . . .  oo~,)<~o~iq,~ . . . . .  o~ c(nl/2)/ (18) 
OQ . . . ~ n  

as is obvious applying Wick's theorem to one of the factors and again using 

Now remember that c(n) i> 1 and the theorem is proven. [] 

. A P P L I C A T I O N S  T O  I N T E R A C T I N G  S Y S T E M S  

We indicate the free measure now by ( )0- 

Corollary 1. Let H be a generalized ferromagnetic Hamiltonian, let 

~oA) H : =  ~e-n)o'{OAe-H)O 
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Then 

<.A | .~>z > <.~>z | OD0 
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(19) 

Proof. The proof proceeds from the theorem in the same way, as the 
proof of (11) proceeds from the Lemma (10), namely, by expansion of e u 
on both sides and by the use of the theorem for each term. �9 

Example. 

((o i �9 oj)(o;. %))H> ~ <ofo~>H<oi%f>o = N-'<oj.  Ok> u (20) 

For a system in an external magnetic field, we can apply the method of 
the "ghost spin", i.e., think of o~ as generating the magnetic field. (2) Let e be 
the unit vector in the direction of the field. You get 

<(.j- e)(o k �9 e)>H~> N-t<(oj" CJk)>n (21) 

This means that in the presence of an external magnetic field the 
components of the spin in the field direction are stronger correlated than 
the other components. They are also stronger correlated than in the 
absence of the field, because, in this case, the both sides of (21) would be 
equal in magnitude. 

If we set o~ = 1 in (19), we obtain 

Corollary 2. For H generalized ferromagnetic 

<%>H >" <%>0 (22) 

If one contracts the indices, this is the inequality 

This inequality shows that a ferromagnetic interaction favors the 
alignment of spins. It is in some sense stronger than what is usually called 
the first Griffiths inequality, which implies only 

( I-I (o~.%)) >10 (24) 
(j, k) n 

As an example for the difference between (23) and (24) consider the special 
case of (23) 

((o i . oj)z) n>~ 1/N (25) 

For N = 1, the right-hand side of (23) is only in those cases not equal to 
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zero, where the variable is identical equal to one, so the content of (23) and 
(24) is the same. But for higher "spin"-dimensions, (23) is stronger, and it is 
only this inequality which generalizes the first Griffiths inequality with 
respect to its meaning, namely, the alignment of spins. 

While (21) and (23) are confirmations of intuitively obvious facts, the 
following statement is less intuitive. It shows that generalized ferromagnetic 
Hamiltonians are the analog of purely attractive interactions. 

Corollary 3. The canonical free energy 

F(  fi, H )  := - fl -llog(e-BH}0 

is negative and subadditive on the space of generalized ferromagnetic 
Hamiltonians: 

F( fl, H + K) < F( fi, H)  + F( fl, K) (26) 

P r o o f .  One has to show (e-/~H}o/> 1 and 

(e-P(H+K))O >/ (e-flU}o(e-fiK}o 

This follows again by expansion of the exponentials and termwise applica- 
tion of the Lemma (10) and of the theorem. �9 

Now consider disjoint volumes (=  sets of sites) V and W. Let the 
respective Hamiltonians be H v and H w, and let K be the interaction 
between V and W, so that 

Hvu w = Hv + Hw + K 

Suppose that all these Hamiltonians are generalized ferromagnetic. 
Then (26), @-l~X}o/> 1 and 

(e-B(Hv+Hw)}O = (e-BHv}o(e-PH~}o 

imply the subadditivty of the free energy as function of the volume: 

Corol lary 4. 

F( fl, Hwo w ) <<. F( fi, Hv ) + F( fi, Hw ) (27) 

As is well known, this subadditivity is useful to obtain a simple proof 
for the existence of the thermodynamic limit. (l~ 

Since dimensional analysis is simportant in statistical mechanics and 
field theory, we add the following result: 

Corollary 5. Let V n be the n-dimensional simple cubic lattice L • 
L • �9 �9 �9 x L, with L = (1,2, . . . ,  l) .  Let Hn be the Hamiltonian /4, --- 
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--~k~(i,j)(O i " Oj), where the sum is over all pairs of nearest neighbors. Then 
the free energy per site, 

f (  fl, H,,) = I - " F (  B ,H . ,  V. ) (28) 

(we indicate here explicitly the lattice in which H .  is supposed to act) is a 
decreasing and subadditive function of the lattice dimension n: 

f ( f i ,  Hm+.)  < f ( f l ,  Hm) + f ( f i ,  H . )  (29) 

(The spin dimension is kept fixed.) 

Proof. Observe that 

Vm+ n =  V m x V n (30) 

and 

Hm+ . = H m + H n (31) 

where Hm acts in the first, and H .  in the second factor of (30), i.e., Hm 
collects all the interactions along links which are parallel to the m first 
coordinate directions, H .  the other ones along the links which are parallel 
to the n last coordinate directions. 

For the single summand in (31) we have 

F(  fl, Hm , Vm+,, ) = l"F(  fl, Hm , Vm ) 

We use this on the right-hand side of (26) with Hm+ . taking the role of 
H +  K: 

F(  fi, Hm+ . , Vm+. ) <~ l"F( fl, H m , V.~ ) + lmF( fl, H .  , V. ) 

Division by I m+" yields the desired result. [] 
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